Using lunary with React
1
Import
Install the package and import the necessary functions from our React export:
import lunary, { useChatMonitor } from 'lunary/react';
2
Initialize lunary
Initialize the SDK with your application's tracking ID:
lunary.init({
publicKey: "PUBLIC KEY",
})
3
Use the `useChatMonitor` hook
The useChatMonitor
hook exposes the following functions:
const {
restart,
trackFeedback,
trackMessage
} = useChatMonitor();
Here's an example of how you would it into your Chat component.
import { useState, useEffect } from "react";
const App = () => {
const [input, setInput] = useState("");
const [messages, setMessages] = useState([]);
const { restart: restartMonitor, trackFeedback, trackMessage } = useChatMonitor();
// Step 4: Use Effects for Initialization
useEffect(() => {
restartMonitor();
}, []);
// Step 5: Define Your Message Handlers
const askBot = async (query) => {
// Track the user message and keep the message ID in reference
const messageId = trackMessage({
role: 'user',
content: query,
});
setMessages([...messages, { id: messageId, role: "user", content: query }]);
const answer = await fetchBotResponse(query, messages);
setMessages([...messages, { role: "assistant", content: answer }]);
// Track the bot answer
trackMessage({
role: 'assistant',
content: answer,
});
}
// Your message logic
const fetchBotResponse = async (query, messages) => {
const response = await fetch("https://...", {
method: "POST",
body: JSON.stringify({ messages }),
});
return await response.text();
};
const restartChat = () => {
setMessages([]);
restartMonitor();
}
// Step 6: Render UI
return (
<>
<div>
{messages.map((message) => (
<div key={message.id}>
<div>{message.role}</div>
<div>{message.text}</div>
</div>
))}
</div>
<input
value={input}
onChange={(e) => setInput(e.target.value)}
onKeyDown={(e) => {
if (e.key === "Enter") {
askBot(input);
setInput("");
}
}}
/>
</>
);
}
4
Reconcile calls on your backend
Make sure to pass the message IDs to your backend to reconcile with the backend calls and agents.
Vercel AI SDK Integration
Effortlessly integrate the Vercel AI SDK into your Next.js app using lunary We've built a custom hook that makes tracking your AI-driven chats a breeze.
This assumes you are using Next.js. If you are using another framework, contact us and we'll help you integrate.
1
Import and Initialize
Import lunary and the AI SDK helper hook, then initialize the monitor with your app ID.
import lunary, { useMonitorVercelAI } from "lunary/react"
lunary.init({
publicKey: "PUBLIC KEY"
})
2
Wrap the useChat hook
export default function Chat() {
const ai = useChat({
// This is necessary to reconcile LLM calls made on the backend
sendExtraMessageFields: true
})
// Use the hook to wrap and track the AI SDK
const {
trackFeedback, // this a new function you can use to track feedback
messages,
input,
handleInputChange,
handleSubmit
} = useMonitorVercelAI(ai)
// Optional: Identify the user
useEffect(() => {
lunary.identify("elon", {
name: "Elon Musk",
email: "elon@tesla.com",
})
}, [])
return (
// ... your chat UI ...
)
}
3
Setup the monitor on the backend
We'll need to reconcile the OpenAI calls made in the backend, with messages sent from the frontend. To do this, we'll need to use the backend version of the lunary.
import lunary from "lunary";
import { monitorOpenAI } from "lunary/openai";
lunary.init({
publicKey: "PUBLIC KEY",
})
// Create an OpenAI API client and monitor it
const openai = monitorOpenAI(
new OpenAI({
apiKey: process.env.OPENAI_API_KEY
})
);
4
Reconcile messages with OpenAI calls
Once your openai client is monitored, you can use the setParent
method to reconcile the frontend message IDs with the backend call:
const response = await openai.chat.completions
.create({
model: "gpt-4",
stream: true,
messages: messages,
})
// The setParent method reconcilates the frontend call with the backend call
.setParent(lastMessageId);
Full API Function Example
Make sure you've enabled sendExtraMessageFields
on the useChat
hook so that message IDs are also sent.
// ./app/api/chat/route.ts
import OpenAI from "openai";
import { OpenAIStream, StreamingTextResponse } from "ai";
// Import the backend version of the monitor
import lunary, { monitorOpenAI } from "lunary/openai";
lunary.init({
publicKey: "PUBLIC KEY",
})
// Create an OpenAI API client and monitor it
const openai = monitorOpenAI(
new OpenAI({
apiKey: process.env.OPENAI_API_KEY
})
);
export const runtime = "edge";
export async function POST(req: Request) {
const data = await req.json()
const { messages: rawMessages } = data
// Keep only the content and role of each message, otherwise OpenAI throws an error
const messages = rawMessages.map(({ content, role }) => ({ role, content }))
// Get the last message's run ID
const lastMessageId = rawMessages[rawMessages.length - 1].id
// Ask OpenAI for a streaming chat completion given the prompt
const response = await openai.chat.completions
.create({
model: "gpt-4",
stream: true,
messages: messages,
})
// The setParent method reconcilates the frontend call with the backend call
.setParent(lastMessageId);
const stream = OpenAIStream(response);
return new StreamingTextResponse(stream);
}